Development and evolution of neuronal diversity

FKNE symposium – 11 October 2023

Two mechanisms generate neuronal diversity

Spatial patterning

reviewed in Holguera and Desplan, Science 2018 original data: Jessell, Briscoe, Hippenmeyer and many other labs

Two mechanisms generate neuronal diversity

Spatial patterning

Temporal patterning

reviewed in Holguera and Desplan, Science 2018 original data: Jessell, Briscoe, Hippenmeyer and many other labs

Brody and Odenwald, Dev Biol 2000

Brody and Odenwald, Dev Biol 2000

reviewed in Mira and Morante, Front Cell Dev Biol 2020

Brody and Odenwald, Dev Biol 2000

reviewed in Mira and Morante, Front Cell Dev Biol 2020

Brody and Odenwald, Dev Biol 2000

reviewed in Mira and Morante, Front Cell Dev Biol 2020

Temporal transcription factors were identified by antibody screens and informed guesses

Our model system: Drosophila optic lobe

Fischbach and Dittrich, 1989, Borst et al 2020

Ozel, Simon, et al, 2022

Our model system: Drosophila optic lobe

Fischbach and Dittrich, 1989, Borst et al 2020

Ozel, Simon, et al, 2022

Drosophila optic lobe development

Li, Erclik, et al, Nature 2013

Li, Erclik, et al, Nature 2013

Single-cell sequencing of the larval optic lobe

Li, Erclik, et al, Nature 2013

Single-cell sequencing of the larval optic lobe

Li, Erclik, et al, Nature 2013

Single-cell sequencing of the larval optic lobe

Trajectory analysis of neural stem cells

Li, Erclik, et al, Nature 2013

Single-cell sequencing of the larval optic lobe

Trajectory analysis of neural stem cells

Li, Erclik, et al, Nature 2013

Li, Erclik, et al, Nature 2013

Single-cell sequencing of the larval optic lobe

Trajectory analysis of neural stem cells

Hth Ey Slp D Tll Image: Constraint of the state of

Identify new tTFs

Konstantinides, Holguera, Rossi et al, 2022

Temporal transcription factor expression in neuroblasts

Lateral \leftarrow Medial Medulla NBs Oldest Medulla Medulla NE NB age Oldest Hth + Hth + Ey + Sip + D + Til

Temporal transcription factor expression in neuroblasts

Lateral \leftarrow Medial Medulla NBs Oldest Medulla NE NB age Oldest Hth \rightarrow Hth \rightarrow Ey \rightarrow Sip \rightarrow D \rightarrow Til

Konstantinides, Holguera, Rossi et al, 2022

Take-home message

We identify a complete (?) temporal series in the optic lobes

We establish the birth order and temporal window of origin of each neuronal type in the medulla

Proof of principle for use of similar techniques in non-genetic models

- 1. Evolution of a new cell type (Pop et al, 2020; Prieto-Godino et al, 2020)
- 2. Genetic drift changes in terminal features (Ding et al, 2016)
- 3. Circuitry change synaptic partners or synaptic strength (Seeholzer et al, 2018)

1. How different is the neuronal type composition of brain structures?

- 1. Evolution of a new cell type (Pop et al, 2020; Prieto-Godino et al, 2020)
- 2. Genetic drift changes in terminal features (Ding et al, 2016)
- 3. Circuitry change synaptic partners or synaptic strength (Seeholzer et al, 2018)

1. How different is the neuronal type composition of brain structures? 2. How do these differences evolve? Changes in neuronal development.

- 1. Evolution of a new cell type (Pop et al, 2020; Prieto-Godino et al, 2020)
- 2. Genetic drift changes in terminal features (Ding et al, 2016)
- 3. Circuitry change synaptic partners or synaptic strength (Seeholzer et al, 2018)

- 1. Evolution of a new cell type (Pop et al, 2020; Prieto-Godino et al, 2020)
- 2. Genetic drift changes in terminal features (Ding et al, 2016)
- 3. Circuitry change synaptic partners or synaptic strength (Seeholzer et al, 2018)

1. How different is the neuronal type composition of brain structures? 2. How do these differences evolve? Changes in neuronal development.

- 1. Evolution of a new cell type (Pop et al, 2020; Prieto-Godino et al, 2020)
- 2. Genetic drift changes in terminal features (Ding et al, 2016)
- 3. Circuitry change synaptic partners or synaptic strength (Seeholzer et al, 2018)

Fischbach and Dittrich, 1989

Ozel, Simon, et al, 2022

Comparative analysis of neuronal type composition

Drosophila virilis

Drosophila melanogaster

Ozel, Simon, ..., Konstantinides*, Desplan*, 2021

scCoda – Compositional analysis of single-cell data

87% of cells are melanogaster

scCoda – Compositional analysis of single-cell data

87% of cells are melanogaster

scCoda – Compositional analysis of single-cell data

87% of cells are melanogaster

1. How different is the neuronal type composition of brain structures? 2. How do these differences evolve? Changes in neuronal development.

- 1. Evolution of a new cell type (Pop et al, 2020; Prieto-Godino et al, 2020)
- 2. Genetic drift changes in terminal features (Ding et al, 2016)
- 3. Circuitry change synaptic partners or synaptic strength (Seeholzer et al, 2018)

equivalent to the Drosophila third instar larva?

D. melanogaster 3rd instar larvae

D. melanogaster 3rd instar larvae

D. virilis 3rd instar larvae

Evolution of temporal patterning

Drosophila melanogaster

Hth
Ey
Slp
D
Tll

Image: Constraint of the state of

Examples of differences

Addition or elimination of a temporal window

Duplication of part or all of the lineage

Evolution of temporal patterning

Drosophila melanogaster

Experimental procedure

Trajectory inference: Slingshot

Generate transcription factor lists

Assess dynamic expression along pseudotime: Tradeseq

<u>time</u>

- 1. Evolution of a new cell type (Pop et al, 2020; Prieto-Godino et al, 2020)
- 2. Genetic drift changes in terminal features (Ding et al, 2016)
- 3. Circuitry change synaptic partners or synaptic strength (Seeholzer et al, 2018)

1. How different is the neuronal type composition of brain structures? 2. How do these differences evolve? Changes in neuronal development.

Circuitry and behavior?