

SCENTINEL kick-off meeting:

The link between gene expression and chromatin in Drosophila development

Mattias Mannervik lab Stockholm University Sergei Pirogov, Ph.D. student

Histone replacement projects

Our objects of study: embryos, wing discs, and S2 cell line.

- 1. H3K14ac replacement project (*Isabela Regadas et al, Mol Cell,* 2021)
- 2. H3K79me project (Alexander Pfab, Hicham Houhou, *unpublished*)

Zygotic genome activation in Drosophila

With modifications from Harrison et al, Genetics, 2023

Tissue-specific RNA Polymerase II promoter-proximal pause release and burst kinetics in a Drosophila embryonic patterning network

(George Hunt et al, Genome biology, 2024)

Toll-signaling mutants provide cell type-specific resolution

Paused Pol II is established at DV genes prior to ZGA but is released into elongation in a tissue-specific manner

qPRO-seq

Enhancer chromatin state reflects tissue-specific DV gene transcription

Tissue-specific RNA Polymerase II promoter-proximal pause release

Catalytic and non-catalytic functions of CBP in zygotic genome activation

(Sergei Pirogov, *unpublished*)

In collaboration with Audrey Marsh and Melissa Harrison, Wisconsin University, US

Catalytic function in ZGA

+1 kb -1 kb

-1 kh

TSS

TSS

+ 1 kb

TSS

-1 kb

+1 kb -1 kb

TSS

+ 1 kb

CRY2-CBP CRY2-CBP optogenetic (blue light) inactivation N-CBP^{CRY2} CRY2 TAZ KIX HAT Bromo L TAZ RING⊷ →ZZ 1 hour collection PHD 2 hours blue light />< 2 hours blue light CBP H3K27ac blue light control blue light control 2250 2000 1750 1500 1250 1000 750 7000 Blue-light treated 6000-Control embryo 5000 2-3 hpf 2-3 hpf 4000 3000 500-+1 kb -1 kb TSS + I kb -1 kb TSS Normal gastrulation Incomplete gastrulation H3K27ac DAPI H3K27ac П

Inactive CBP suppresses pause release

Non-catalytic function of CBP

CBP depletion leads to decreased transcription initiation

Conclusions

- Catalytic activity of CBP mediates pause-release into productive elongation.
- CBP promotes transcription initiation in non-catalytic manner.

Bimodal profiling of epigenetic states through embryogenesis

(Sergei Pirogov, Aleksander Purik, *unpublished*)

In collaboration with Marek Bartosovic, Stockholm University

Nano-CUT&Tag: the new approach for single-cell bimodal profiling of epigenome (Bartosovic and Castelo-Branco, 2023)

Single-cell nano-CUT&Tag on Drosophila embryo

Dimensionality reduction by snapatac2 for acetylation

Dimensionality reduction on bin (5 kbp) PCA (2:30), spectral algorithm, clusterization leiden

UMAP1

Patterns of gene expression based on *in situ* during embryogenesis (BDGP), 13-16 stages, pattern terms were parsed

Dimensionality reduction of combined methylation and acetylation fragments

Scores based on in situ gene data

Cluster annotation based on GO-terms and *in situ* patterns

Cluster annotation based on GO-terms and *in situ* patterns

Integration of scATAC-seq with acetylation nano-CT

Calderon, Blecher-Gonen, Huang, Secchia,..., Furlong, Shendure, Science, 2022

Comparison of clusters annotations

Bimodal clusterization with the combined GO-term Clusterization of integrated scATAC with nano-CT and in situ annotation with label transfer

Early embryogenesis time point has a bad cluster resolution in bimodal nano-CT embedding

Integration with ATAC-seq significantly improves cluster resolution

Integration of nano-CT and scATAC of different time points

Label transfer from scATAC to nano-CUT&Tag

Aims of the study

- How repressive state is distributed in time-cell space
- Do cell move from more repressive state to more permissive in their trajectories
- Is chromatin accessibility precedes acetylation
- Is chromatin accessibility more permissive than acetylation
- What is the distribution of the "void" state
- How much chromatin accessibility and acetylation are predictive for gene expression

Acknowledgements

Mattias Mannervik

Sergei Pirogov, Ph.D. student Aleksander Purik Daniele Santoro, student Artem Ilin, postdoc Hicham Houhou, postdoc Yanzi Xing, Ph.D. student

Thank you for attention!

p300/CBP sustains Polycomb silencing by nonenzymatic functions

George Hunt, Ann Boija & Mattias Mannervik, Mol Cell, 2022

p300/CBP regulation of PcG-mediated repression

p300/CBP regulation of transcription activation

