

Session 2a – Hardware and Software

2. Session 2 (Wednesday September 4th, Room 2 Tower D):

- a. Hardware and software (14:30-16:00)
 - i. Computation hardware: local vs centralized
 - ii. Computation software: management
 - iii. Storage hardware: cost, maintenance, long term
- b. Data management
 - i. FAIR policies
 - ii. Responsibilities
 - iii. Centralized database

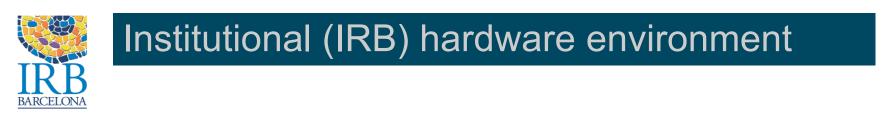
Coffee break (16:00-16:30)

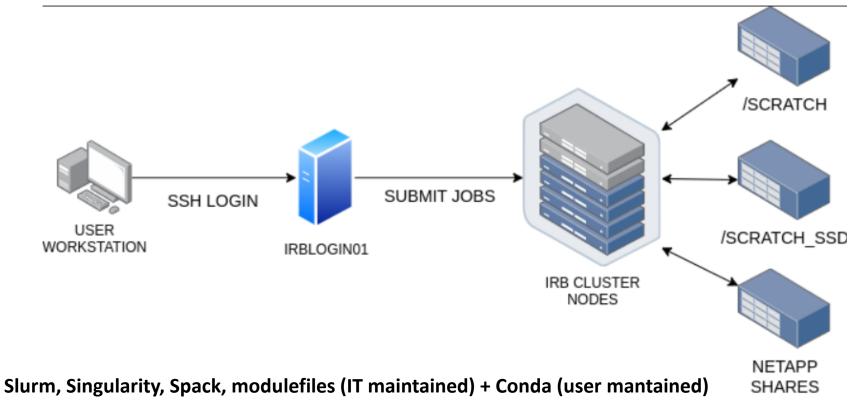
- c. Software management (16:30-17:30):
 - i. Reproducibility
 - ii. Containers vs condas, management
 - iii. Pipelines and workflow systems
 - iv. Queues vs unlimited resources

Local (facility) hardware

Local (biostats) hardware

(1) Local hardware


- Officer workstations / laptops (Mac by tradition, anything with Linux and a lot of RAM is fine)
- ~999 cables and adapters
- GOOD chair, screen, mouse and keyboard


(2) Computing (FAT servers)

- Both Rocky Linux 64 bit
- Aurora (end-of-life): AMD Opteron 64 bits 4x12 Cores, RAM ~0.75 TB
- Moana: AMD EPYC 2x28 Cores @3.5GHz, RAM ~1.8 TB DIMM DDR4
- Both: local HDD/SSD (system, homes, etc) + fast scratch disk

(3) Virtual (utility) servers

- Wiki, website, light shiny-like apps
- Users reports (apache, internal and external)

For all Institute users (with special queues for facility)

ssh + salloc OR On-demand (Rstudio, Jupyter)

HPC Computing: IRBCluster

Centralized (Institutional) Hardware: IRBCluster

The IRB cluster is based on Intel Xeon Platinum processors from the Ice Lake generation, with NVIDIA's Mellanox high-performance network interconnect, and running Rocky Linux 8.7 as the operating system.

This general-purpose cluster consists of 53 CPU nodes and 5 GPU nodes, with a total of 6.21k CPU cores and 34 TB of RAM.

All compute nodes consist of 2 numa nodes in total per node.

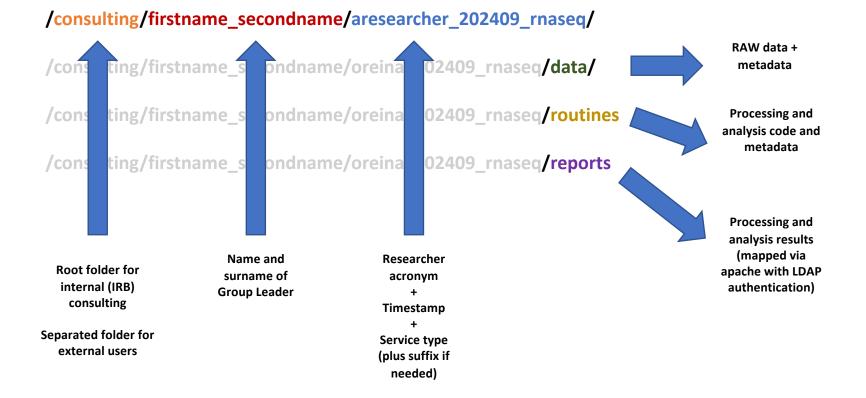
CPU Nodes (Only 8 Icelake nodes shown):

- 8 nodes (irbccn[01-08])
 - Processor: Intel Xeon Platinum 8358 CPU @ 2.60GHz
 - Architecture: Ice Lake
 - Cores: 64 per node (2 sockets, 32 cores each)
 - RAM: 1024 GB DDR4 3200 MT/s (irbccn[01-03]), 256 GB DDR4 3200 MT/s (irbccn[04-08])
 - Cache Size: L1d: 48 KB, L1i: 32 KB, L2: 1280 KB, L3: 48 MB
 - Network: NVIDIA Mellanox 25 Gbit/s PCI-E adapter
 - Local Storage: 350 GB SSD (temporary storage)

Software management & maintenance

- System-level software (still useful):
 - Emacs + ESS + Screen / Tmux (steep learning curve but very flexible)
 - All Linux command tools
 - R + CRAN / BioC / Other libraries (compiled, several versions, not always ideal)
 - Nextflow + Docker/Singularity
 - Other software: trimming, fastqc, aligners, really anything
 - Limited flexibility (devel versions), requires maintenance and discipline
 - Dependencies !
- User-level software (conda):
 - Custom and Shared conda recipes / environments
 - Solves dependency nightmares & system-level screw-ups
 - Almost unlimited flexibility, great to test devel libs
 - Beware of storage, caches, duplicated software packs
- User-level software (Nextflow / nf-core):
 - 'Complete' reproducibility
 - Beware of storage
- Software development (Rlibs)
 - R / Bioconductor
 - Github + Zenodo

Storage: costs & considerations


Storage

- Overview
 - 2 x Netapp NFS/SMB Volumes
 - biostats: 60 TB, work / critical data volume
 - ga: XX TB, scratch / utility volume (reused from Illumina Genome Analyzer)
 - Cloud/Tape mid/long term storage
- Cost
 - Per-year, paid to ITS
 - Includes maintenance & backup (snapshot) with customizable periodicity
 - Keep it always in mind (upgrade with plenty of advance)
 - Consider charging users for mid/long term storage/management
- Long-term storage approaches (data)
 - It is always a delicate balance
 - Radical approach: on publishing RAW data goes to FAIR repository, all else: rm -rf *
 - Hyper-friendly approach: Keep (almost) everything
 - Sensible approach: ensure reproducibility & make your life easier

Our consulting folder structure

Biostats filesystem structure (research Project data, code and results)

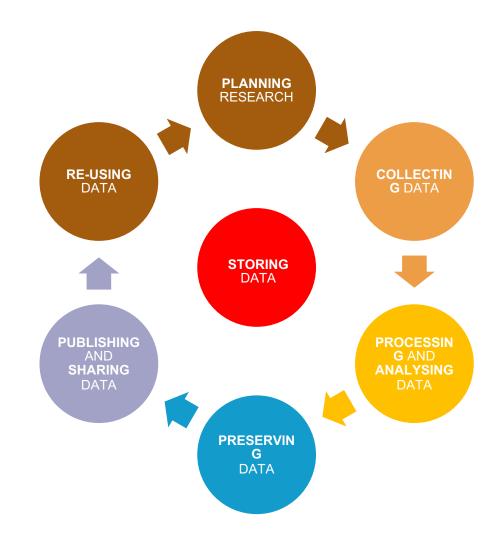
Session 2b – Research Data Management

2. Session 2 (Wednesday September 4th, Room 2 Tower D):

- a. Hardware and software (14:30-16:00)
 - i. Computation hardware: local vs centralized
 - ii. Computation software: management
 - iii. Storage hardware: cost, maintenance, long term
- b. Data management
 - i. FAIR policies
 - ii. Responsibilities
 - iii. Centralized database

Coffee break (16:00-16:30)

- c. Software management (16:30-17:30):
 - i. Reproducibility
 - ii. Containers vs condas, management
 - iii. Pipelines and workflow systems
 - iv. Queues vs unlimited resources

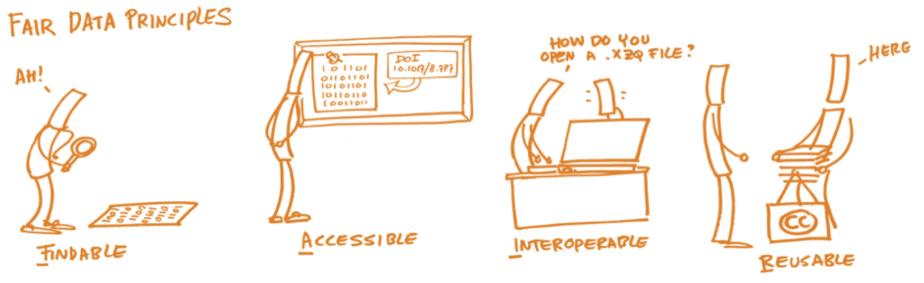


The Research Data Life Cycle + FAIR

Each phase of the data life cycle for every research Project presents its own **practical challenges** regarding

Research Data Management

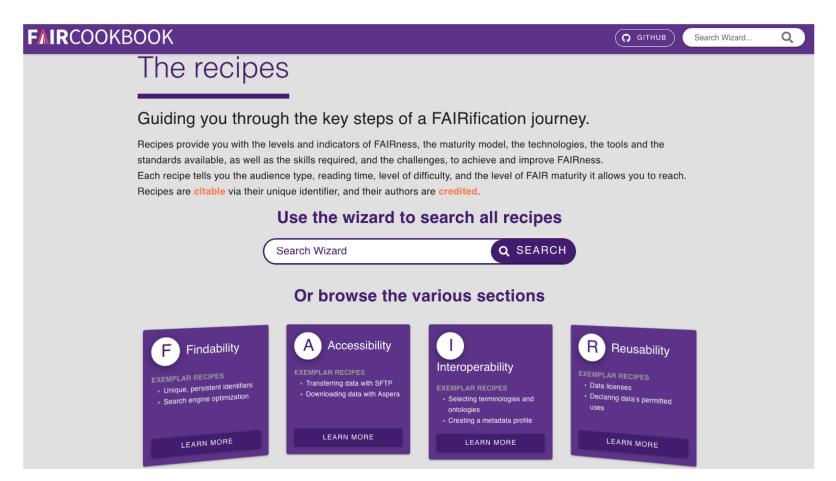
In 2016, the 'FAIR Guiding Principles for scientific data management and stewardship' were published in Scientific Data. The authors intended to provide guidelines to improve the Findability, Accessibility, Interoperability, and Reuse of digital assets.



Adapted from: https://www.youtube.com/watch?v=OL_Vd9dd-AQ

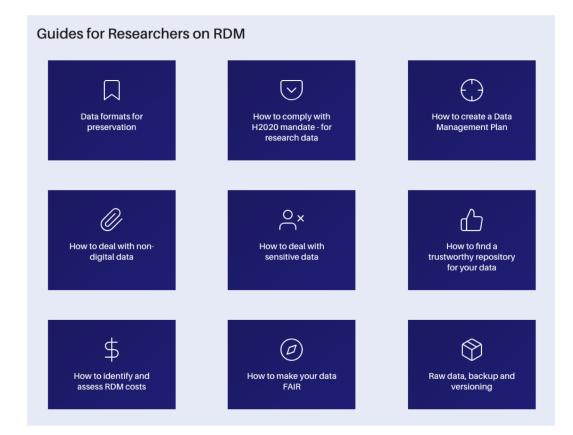
FAIRification

How to FAIRify my data ?



https://www.go-fair.org/fair-principles/

It all starts with (good) metadata


https://faircookbook.elixir-europe.org/

https://faircookbook.elixir-europe.org/content/search-wizard.html

https://www.openaire.eu

https://www.openaire.eu/guides

https://www.go-fair.org/how-to-go-fair/

FAIR Principles Implementation Networks News Events Resources About GO FAIR Q

How to GO FAIR

Home > How to GO FAIR

F/IR

How to GO FAIR

Since its beginning in early 2018, the GO FAIR community has been working towards implementations of the **FAIR Guiding Principles**. This collective effort has resulted in a three-point framework that formulates the essential steps towards the end goal, a global Internet of FAIR Data and Services where data are **F**indable, **A**ccessible, **I**nteroperable and **R**eusable (**FAIR**) for machines.

A framework guiding FAIRification

https://the-turing-way.netlify.app/index.html

Fig. 1 The Turing Way project illustration by Scriberia. Zenodo. http://doi.org/10.5281/zenodo.3332807

Good practices for good metadata

- Use **folders** and **subfolders** to reflect data organization
- Name folders and files appropriately with **explicit names**
- Add version control, README files, etc
- Use **YYYYMMDD** for dates
- Avoid spaces and unnecessary special characters
- Be **consistent**
- Separate **ongoing** and **completed** work

Practical guidelines on file naming conventions:

Harvard: https://datamanagement.hms.harvard.edu/collect/file-naming-conventions

Princeton: https://researchdata.princeton.edu/research-lifecycle-guide/file-organization

Stanford: https://www.sup.org/digital/authors/current/docs/FileNamesFormats.pdf

Data and Metadata standards

Use good, complete metadata and consider metadata cores and standards

- Dublin Core generic metadata <u>https://www.dublincore.org/specifications/dublin-core/dcmi-terms</u>
- DCC Discipline-related metadata <u>http://www.dcc.ac.uk/resources/metadata-standards</u>

Get familiar with standard vocabularies / ontologies (syntax) for your research data and field

- Ensure consist **spelling** and meaning of (for instance) **keywords**
- Check the corresponding **ontology** <u>https://www.ebi.ac.uk/ols/index</u>

FAIR data repositories

What to share and what to preserve, from the perspective of **reproducibility** and **scientific integrity**

In FAIR repository (when possible):

- Data: Raw, (processed), analyzed
- Metadata for Data
- Metadata for Data **Processing / Analyses**
- Link / DOI for **publication**(s) (if applicable)
- Data Management Plan (!)

When in doubt, check

https://www.re3data.org https://fairsharing.org

What, where and when to deposit (and who)

What Where		When	Who		
RAW data + Metadata	Specific repositories whenever possible www.re3data.org/, fairsharing.org, ELIXIR deposition databases)	Anytime, and at least before paper submission (required)	Check with the facility generating / analyzing the data		
Publication-related final figures, data and results tables, supplementary materials of any kind	Journal-provided data entry or check with journal for links to accepted generic repositories (CSUC > Others)	At paper submission time (at least)	You (or your PI / other author)		
Programming code and related documentation, tutorials, etc	ted documentation, prials, etc provided materials or platform (e.g. CodeOcean)		The developer of the code or the expert who reused existing workflows (e.g. on Galaxy)		
Other generic data			You (or your PI / other author)		

Institutional (or facility) data catalog

Slowly going there...

- FAIR data Knowledge graphs
- Data meta-indexers (Dataverse, Mendeley data...)
- Research Data Management systems (Renku / Gatekeeper)
- FAIR Assessment tools

Knowledge graphs and FAIR

Renku: a platform for sustainable data science

Rok Roškar¹, Chandrasekhar Ramakrishnan¹, Michele Volpi¹, Fernando Perez-Cruz¹, Mohammad Alisafaee², Philipp Fischer³, Lilian Gasser¹, Eliza Jean Harris¹, Firat Ozdemir¹, Patrick Paitz³, Carl Remlinger², Luis Salamanca¹, Ralf Grubenmann¹, Tasko Olevski¹, Elisabet Capón García¹, Lorenzo Cavazzi¹, Jakub Chrobasik², Andrea Cordoba¹, Alessandro Degano², Jimena Dupré¹, Wesley Johnson¹, Eike Kettner¹, Laura Kinkead¹, Seán Murphy¹, Flora Thiebaut¹, Olivier Verscheure^{1,2} 1. Swiss Data Science Center, ETH Zürich, Zürich, Switzerland. 2. Swiss Tederal Institute for Forest, Snow, and Landscape Research, WSL, Birmensdorf, Switzerland

Coffee !

2. Session 2 (Wednesday September 4th, Room 2 Tower D):

- a. Hardware and software (14:30-16:00)
 - i. Computation hardware: local vs centralized
 - ii. Computation software: management
 - iii. Storage hardware: cost, maintenance, long term
- b. Data management
 - i. FAIR policies
 - ii. Responsibilities
 - iii. Centralized database

Coffee break (16:00-16:30)

- c. Software management (16:30-17:30):
 - i. Reproducibility
 - ii. Containers vs condas, management
 - iii. Pipelines and workflow systems
 - iv. Queues vs unlimited resources

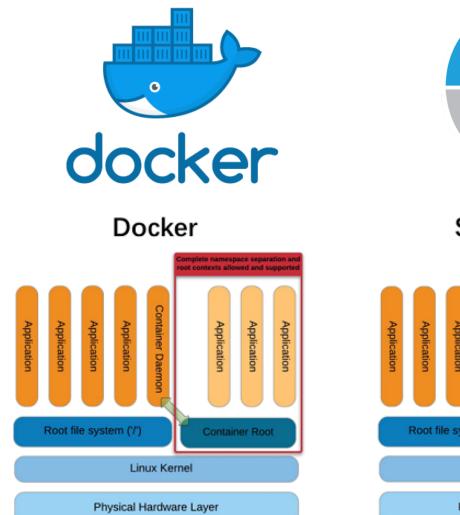
Section 2c – Software management

2. Session 2 (Wednesday September 4th, Room 2 Tower D):

- a. Hardware and software (14:30-16:00)
 - i. Computation hardware: local vs centralized
 - ii. Computation software: management
 - iii. Storage hardware: cost, maintenance, long term
- b. Data management
 - i. FAIR policies
 - ii. Responsibilities
 - iii. Centralized database

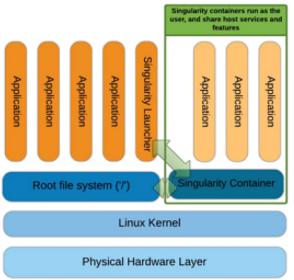
Coffee break (16:00-16:30)

- c. Software management (16:30-17:30):
 - i. Reproducibility
 - ii. Containers vs condas, management
 - iii. Pipelines and workflow systems
 - iv. Queues vs unlimited resources

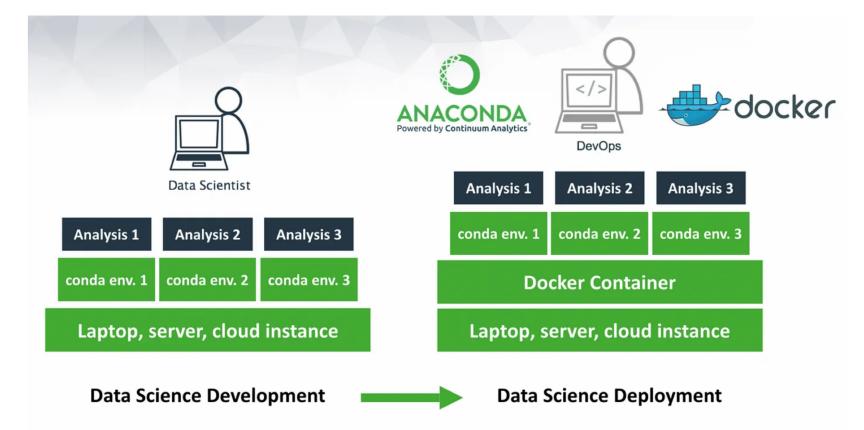


Reproducibility and "Replicability"

- R is for **Reproducible**
- Data and metadata (for both data and processing / analysis)
- Software versions
- Random seeds
- Version control for your code
- Workflow management systems
- Reproducibility of **biological** results and **conclusions**
- Do not **obsess** with perfect numeric reproducibility (99th decimal)
- Good data management habits can help a lot



Tools for reproducibility: Containers



Singularity

Tools for reproducibility: Containers & Conda

https://medium.com/@patrickmichelberger/getting-started-with-anaconda-docker-b50a2c482139

Pipelines & workflow management systems

nextflow nf-core

Snakemake workflow catalog A comprehensive									
	Standardized usage 287 All workflows 3065								
		Workflow		¢	Description	Topics			
	Usage	snakemake-wo seq-star-dese			RNA-seq workflow using STAR and DESeq2	snakemake, sciworkflows, reproducibility, gene-expression- analysis, deseq2			
	Usage snakemake-workflows/dna- seq-gatk-variant-calling			This Snakemake pipeline implements the GATK best- practices workflow	reproducibility, snakemake, sciworkflows, genomic-variant- calling, gatk				
	Usage	franciscozorril	la/metaGEM		:gem: An easy-to-use workflow for generating context specific genome-scale metabolic models and predicting metabolic interactions within microbial communities directly from metagenomic data	metagenomics, computational- biology, metabolic-models, gut- microbiome, snakemake, metagenome-assembled-genomes, mags, metabolism, bioinformatics, flux-balance-analysis, genome-scale- metabolic-model, metabolic- modeling, microbial-ecology, microbiome, systems-biology			

Deploy

Stable pipelines

Centralized

configs

List and update

pipelines

•

Download

for offline use

Participate

https://nf-co.re

Documentation

Slack workspace

C Twitter updates

Hackathons

Develop

Starter template

Code guidelines

CI code linting and tests

Helper tools

Queues vs "Unlimited" resources

- Currently starting to use IRBCluster
- Dedicated queue and special resource allocation
- Frees you from (most of) software management

- Our experience is mostly with facility managed and dedicated FAT servers
- Has many pros and several cons too
- Still a very valid approach if for intstance cost is shared by several facilities

High level of software optimization, software stack is almost independent of OS

Questions, Comments, More coffee ?